Book Review: Arithmeticity in the theory of automorphic forms
نویسندگان
چکیده
منابع مشابه
Arithmeticity in the theory of automorphic forms, by Goro Shimura, Mathematical
This book is a companion to the author’s previous book [11], Euler products and Eisenstein series, published by the AMS. The books’ ultimate objective is to prove algebraicity of the critical values of the zeta functions of automorphic forms on unitary and symplectic groups. In the course of the study of the zeta functions, many important results, which were obtained by the author during 1960-2...
متن کاملProblems in the Theory of Automorphic Forms
1. There has recently been much interest, if not a tremendous amount of progress, in the arithmetic theory of automorphic forms. In this lecture I would like to present the views not of a number theorist but of a student of group representations on those of its problems that he finds most fascinating. To be more precise, I want to formulate a series of questions which the reader may, if he like...
متن کاملModern Theory of Automorphic Forms ∗
The modern theory of automorphic forms is a response to many different impulses and influences, above all the work of Hecke, but also class-field theory and the study of quadratic forms, the theory of representations of reductive groups, and of complexmultiplication, but so far many of the most powerful techniques are the issue, direct or indirect, of the introduction by Maass and then Selberg ...
متن کاملthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولApplications of Spectral Theory of Automorphic Forms
on Γ\H, parametrized as λw = w(w−1). Haas listed the w-values. Haas thought he was solving the differential equation (∆ − λ)u = 0. Stark and Hejhal observed zeros of ζ and of an L-function on Haas’ list. This suggested an approach to proving the Riemann Hypothesis, since it seemed that zeros w of ζ might give eigenvalues λ = w(w − 1) of ∆. Since ∆ is a self-adjoint, nonpositive operator, these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 2002
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-02-00945-x